
Direction de la sécurité de l'Aviation civile

Direction navigabilité et opérations

Edition 1 Version 0 09/07/2015

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS

Guide de bonnes pratiques

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 2/45

Version 0 du 09/07/2015

GUIDE DSAC DE BONNES PRATIQUES METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS

Liste des modifications

Edition et version	Date	Modifications	
Ed1 Version 0	09/07/2015	Création	

Approbation du document

	Rédaction	Vérification	Approbation
Nom	A.Le Berre	T.Vezin	G. Lefèvre
Fonction	DSAC/NO/AIQ	Chef de pôle DSAC/NO/OA	Directeur Navigabilité et Opérations DSAC/NO
Date	23/06/15	23/06/15	09/07/2015

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 3/45

Version 0 du 09/07/2015

Table des matières

List	e des modifications	2
App	probation du document	2
I)	Acronymes et définitions	4
II)	Contexte	5
III)	Présentation du groupe de travail et du document	5
IV)	Définition de la méthode de travail	7
V)	Evénements de sécurité et mesures	10
	■ E01: Approche Non Stabilisée (ANS)	10
	■ E02: Atterrissage dur	15
	■ E03: Atterrissage long	18
	■ E04: Assiette élevée au décollage ou à l'atterrissage	20
	■ E05: Taux de rotation élevé au décollage ou à l'atterrissage	22
	■ E06: Oscillations en roulis lors de l'approche finale	24
	■ E07: Passage sous vitesse d'évolution	27
	■ M01: Longueur de piste restante lors du roulage à l'atterrissage	29
	■ M02: Différence entre décélération réelle et décélération minimale requise lors du roulage à l'atterrissage	30
	■ M03: Délai entre le toucher et l'instant où la décélération atteint le minimum requis	32
	■ M04: Différence entre décélération minimale requise et décélération cible de l'A/B lors du roulage à l'atterrissage	33
	■ M05: Différence entre décélération réelle et décélération commandée par l'A/B lors du roulage à l'atterrissage	34
	■ M06: Différence entre N1 réel et N1 du régime ralenti lors de la séquence de rentrée des reverses à l'atterrissage	35
	■ M07: Délai entre toucher des roues et sortie des reverses à l'atterrissage	36
	■ E08: Non sortie des reverse lors du roulage à l'atterrissage	37
	■ E09: Approche non conforme	38

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 4/45

Version 0 du 09/07/2015

1) Acronymes et définitions

A/B	Auto/Brake		
ADV	Analyse des vols		
ATC	Air Trafic Control		
BEA	Bureau d'Enquêtes et d'Analyses		
DGAC	Direction Générale de l'Aviation Civile		
DSAC	Direction de la Sécurité de l'Aviation Civile		
EASA	Agence Européenne pour la Sécurité de l'Aviation		
EASP	European Aviation Safety Plan (Plan européen de sécurité de l'aviation)		
FPA	Flight Path Angle (pente sol)		
MLW	Maximum Landing Weight		
MTOW	Maximum Take Off Weight		
Niveau de seuil	On considèrera trois niveaux de seuil de détection, le niveau 3		
	correspondant au plus sérieux .		
PSE	Plan de Sécurité de l'Etat : processus par lequel l'État, dans sa fonction		
	de régulation, vise à optimiser les actions relevant de sa compétence,		
	en vue d'améliorer la sécurité		
RA	Radio Altitude		
TD	Touch Down (toucher du train principal)		
VLS	Vitesse minimale sélectionnable.		
	En configuration atterrissage, VLS=VREF		
VREF	Vitesse de référence utilisée en approche finale.		
	En configuration atterrissage, VREF = 1,23 VS1G		
VAPP	Vitesse d'approche finale		
	VAPP=VREF+correction qui dépend du vent		
V2	Au décollage, vitesse que doit atteindre l'avion au plus tard à 35ft avec		
	un moteur en panne et qui doit être maintenue durant le deuxième		
	segment.		
	V2min=1,13VS1G		
WOW	Weight On Wheel (discret qui indique la position de l'avion (AIR/SOL))		

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 5/45

Version 0 du 09/07/2015

II) Contexte

Un programme d'analyse des vols est un outil puissant pour identifier, évaluer et contrôler les risques auxquels un exploitant d'aéronefs doit faire face au cours de son exploitation. Reconnaissant le bénéfice d'un tel programme, les autorités de l'aviation civile ont publié des règlements et des guides visant à l'imposer ou à le promouvoir.

Par exemple, la réglementation européenne impose que les exploitants établissent et maintiennent un programme d'analyse des données de vol pour les avions dont la masse maximale certifiée au décollage est supérieure à 27000 kg.

Par ailleurs, dans le cadre de l'EASP, l'EASA encourage les états à instaurer un dialogue régulier avec ses opérateurs d'aéronefs au sujet de leur programme d'analyse des vols.

Au plan national, l'Etat a pour mission de promouvoir la sécurité des vols. La DSAC participe depuis plusieurs années à l'animation d'un réseau d'échanges autour de la sécurité des vols qui rassemble des compagnies aériennes, des exploitants d'aéroport et des fournisseurs de service ATC : le Réseau Sécurité des Vols France (RSVF). En parallèle, et suite en particulier à l'intérêt exprimé dans le cadre de ce réseau, la DSAC a souhaité promouvoir plus spécifiquement l'analyse des vols et a décidé de créer un groupe de travail portant sur ce thème.

III) Présentation du groupe de travail et du document

Le groupe de travail « Analyse des vols » de la DSAC a pour mission de faire partager l'expérience des exploitants d'aéronefs français afin de définir les meilleures méthodes de sélection et de traitement des paramètres d'analyse des vols pour répondre au besoin d'évaluation des risques auxquels ils sont confrontés en exploitation et ainsi mieux orienter leurs priorités d'action.

Le groupe rassemble, sur la base du volontariat, des experts provenant :

- d'opérateurs français (seuls des exploitants d'avion sont représentés),
- de constructeurs,
- de sous-traitants en analyse des vols,
- de l'administration (DGAC, BEA).

Les travaux du groupe s'inscrivent dans le cadre de la mission de l'Etat de promotion de la sécurité et n'ont pas de lien avec sa mission de surveillance de la conformité règlementaire.

Le présent document a pour but de consigner les résultats des travaux du groupe. Il recueille donc l'ensemble des bonnes pratiques identifiées au sein du groupe en termes de

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 6/45

Version 0 du 09/07/2015

traitement des paramètres d'analyse des vols. Il ne constitue pas un outil de surveillance. Il a été rédigé en collaboration avec l'ensemble des membres du groupe.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 7/45

Version 0 du 09/07/2015

IV) Définition de la méthode de travail

Approche événement/mesure

Les paramètres d'analyse des vols peuvent être sélectionnés et traités de manière à faire ressortir un dépassement de seuil. Dans ce cas, on parlera d'un événement.

Par ailleurs, ils peuvent être utilisés afin de mesurer certaines données pour chaque vol. Dans ce cas, on parlera d'une mesure.

Dans le cadre du programme ADV, un événement génèrera un traitement particulier du cas détecté tandis que la mesure sera utilisée à des fins statistiques afin d'identifier et d'analyser les risques systémiques inhérents à la compagnie.

En pratique, toute problématique peut être abordée selon les deux approches comme le montrent les exemples ci-dessous.

Evénement	Mesure
Assiette élevée au décollage	Assiette maximale atteinte au décollage
Rétraction des trains tardive	Hauteur à laquelle les trains sont rentrés
Arrondi long	Durée de l'arrondi

Dans le document, on utilisera les deux approches. Les événements seront notés E et les mesures M.

Dans la suite du guide, les événements considérés seront qualifiés « événements de sécurité ».

Définition d'un événement de sécurité

Dans ce guide, un événement de sécurité est :

- un événement qui constitue un accident ou un incident au sens du règlement européen 996/2010,
- ou tout autre événement lié à l'utilisation d'un aéronef qui peut impacter la sécurité des vols.

Choix des événements de sécurité et des mesures

La DSAC a fait le choix de ne pas adopter d'approche systématique. Elle n'a pas souhaité traiter pour une catégorie d'occurrences données tous les événements précurseurs et ceci pour chaque catégorie d'occurrence.

L'approche retenue a été de consulter les opérateurs afin de recueillir leurs différentes méthodes de détection et de voir dans quelle mesure ces méthodes pouvaient être généralisées et recommandées.

Ainsi, les événements de sécurité et les mesures mentionnés dans ce document couvrent des risques opérationnels déjà identifiés par les opérateurs et traités au travers de leur

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 8/45

Version 0 du 09/07/2015

programme d'ADV. Par ailleurs, certains événements et mesures ont été proposés par la DSAC dans le cadre du PSE. Aucune catégorie d'occurrence n'a été privilégiée.

Traitement d'un événement/mesure

Pour chaque cas qui sera développé, il sera précisé¹:

- L'objectif visé par la détection de cet événement de sécurité/mesure
- La description de la méthode de détection
 - La logique de détection
 - Le niveau de sévérité avec des exemples d'indicateurs ou de seuils. Les valeurs des seuils sont proposées à titre indicatif. Lorsque les seuils sont précisés pour un type avion, les valeurs sont issues de données utilisées en compagnie ou par un constructeur.
 - La liste des paramètres enregistrés nécessaires à l'élaboration de la logique.

Chaque paramètre sera renseigné de la manière suivante :

Paramètre	Description	Résolution	Fréquence	Unité
Mnémonique utilisé pour désigner le paramètre		Résolution minimale qu'il conviendrait d'avoir sur ce paramètre.	Fréquence d'échantillonnage du paramètre. On renseignera la fréquence minimale qu'il conviendrait d'avoir et la fréquence optimale.	
Туре				

Le paramètre est primaire lorsqu'il est directement utilisé dans la logique de surveillance. Le paramètre est secondaire lorsqu'il n'est pas utilisé dans la logique de détection mais qu'il précise le contexte.

- Des informations de contexte utiles : il s'agit d'informations non enregistrées à bord de l'avion mais utiles pour la logique de détection ou pour la définition d'indicateurs de sévérité.
- Les limitations éventuelles: elles peuvent porter sur les paramètres enregistrés ou la méthode de détection.
- Des renseignements complémentaires : toute autre information pertinente.

¹ Les parties figurant en [Réservé] ne font pas l'objet à l'heure actuelle de remarques particulières. Elles pourront être renseignées ultérieurement.

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 9/45

Version 0 du 09/07/2015

Des méthodes alternatives, le cas échéant.

Analyse statistique

De façon générale et dans le respect des principes de la culture juste, afin de tirer le plus d'enseignement possible du programme d'ADV, il pourra être pertinent de faire des statistiques par terrains, par QFU, par groupes de pilotes (ex : CdB/FO), voire par périodes de l'année, etc.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 10/45

Version 0 du 09/07/2015

v) Evénements de sécurité et mesures

E01: Approche Non Stabilisée (ANS)

Objectif de l'événement

Il s'agit d'identifier les cas où les critères de stabilisation ne sont pas remplis sous une hauteur par rapport au terrain donnée (plancher de stabilisation).

Méthode 1 : Critères de détection isolés

Cette méthode consiste à considérer isolément un certain nombre de critères sur une fenêtre de hauteur terrain donnée et pendant un intervalle de temps donné. Dès qu'un des critères est rempli, une ANS est détectée.

Il peut être pertinent de prendre en compte les critères suivants :

Critères liés à la configuration

Critère		Fenêtre d'observation	Temps de confirmation	
Tout	changement	de	H ² ∈[TD ;1000ft]	N/A
configuration (volets, trains,				
aérofreins)				

Critères de vitesse

Critère	Fenêtre d'observation	Temps de confirmation
VAPP+ΔV _{max} <ias ou<="" td=""><td>H ∈ [0ft; 1000ft]</td><td>2s</td></ias>	H ∈ [0ft; 1000ft]	2s
IAS <vapp+δv<sub>min</vapp+δv<sub>		

Exemples de seuil

Seuil de niveau 1 :

 ΔV_{max} =10 kt

 ΔV_{min} =-5 kt

Critère de vitesse verticale (taux de descente excessif)

Critère	Fenêtre d'observation	Temps de confirmation
VZ <vz<sub>min</vz<sub>	H ∈ [0ft; 1000ft]	5s

Exemple de seuil

- Seuil relatif

En première approximation : $abs(VZ_{th\'{e}orique})[ft/min]=GS[kt]^*\tau$

Avec τ % =plan de descente exprimé en pourcentage (pour un plan de 5%, τ =5)

GS = f(VAPP, Vvent)

La VZ dépend donc du terrain, du type avion et des conditions aérologiques.

On pourra fixer le seuil de VZ_{min} à une marge par rapport à la vitesse verticale nominale à suivre sur un plan standard à la VAPP.

Exemple: pour un plan à 5% avec une marge de 300 ft/min : $abs(VZ_{min}) = [(VAPP+Vvent)*5]+300$

² Hauteur par rapport au terrain. Elle est recalculée à partir du paramètre enregistré 'Altitude'.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

/OLS Page : 11/45

Version 0 du 09/07/2015

- Seuil absolu Seuil de niveau 1 :

 $(B737): VZ_{min} = -1200 ft/min$

Critères de trajectoire

Critère	Fenêtre d'observation	Temps de confirmation
$(FPA-Plan_{ref}) > \Delta FPA_{max}$	H∈[50ft; 1000ft]	2s
ou		
$(FPA-Plan_{ref}) < \Delta FPA_{min}$		
Abs (GLIDEDEV)>GLIDEDEV _{max}	H∈[200ft ; 1000ft]	3s
Abs (LOCDEV)>LOCDEV _{max}	H∈[0ft; 1000ft]	3s
ΔTRACK ³ > ΔTRACK _{max}	H∈[50ft; 500ft]	N/A

Exemples de seuil

Seuil de niveau 1 :

 $GLIDEDEV_{max} = 1 dot$

 $LOCDEV_{max} = 0.5 dot$

 $\Delta FPA_{max} = 0.5^{\circ}$

 $\Delta FPA_{min} = -0.5^{\circ}$

 Δ TRACK_{max} = 5°

Critères d'attitude

Critère	Fenêtre d'observation	Temps de confirmation
PITCH>PITCH _{max}	H∈[0ft; 1000ft]	2s
PITCH <pitch<sub>min</pitch<sub>	H∈[0ft; 1000ft]	2s
Abs (ROLL)> ROLL _{max}	H∈[0ft ; 500ft] après	2s
	alignement	

Exemples de seuil

Seuil de niveau 1 :

 $PITCH_{max} = 10^{\circ}$

 $PITCH_{min} = -3^{\circ}$

 $ROLL_{max} = 7^{\circ}$

Critères de poussée

Critère	Fenêtre d'observation	Temps de confirmation
N1< N1 min (turboréacteur)	H∈[0ft ;1000ft]	4s
Tq <tq<sub>min (turbopropulseur)</tq<sub>		

Exemple de seuil

Seuil de niveau 1 :

 $(B737): N1_{min} \le 37\%$

Niveau de sévérité

Le niveau de sévérité peut être évalué en fonction :

 3 Δ TRACK correspond à la différence entre la route courante et la valeur de route mesurée à 500 ft considérée comme valeur de référence.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 12/45

Version 0 du 09/07/2015

- des valeurs de dépassements,
- de la durée des dépassements,
- de la hauteur terrain au moment des dépassements⁴.

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence	Unité		
			Minimale/Optimale			
	Paramètres primaires					
ALT	Altitude	5	1Hz/2Hz	ft		
IAS	Vitesse indiquée	0,25	1Hz	kt		
VAPP	Vitesse d'approche	1	1Hz	kt		
VZ	Vitesse verticale	16	2Hz/4Hz	ft/min		
PITCH	Assiette	0,5	4Hz	deg		
ROLL	Roulis	0,5	2Hz	deg		
HEADING	Сар	0,5	2Hz	deg		
SLATS	Position des becs	1	1Hz	deg		
FLAPS	Position des volets	1	1Hz	deg		
SPD_BRK	Position des	0,2% de l'amplitude	1Hz	deg		
	aérofreins	maximale				
GEAR	Position des trains	N/A	1Hz	N/A		
N1 #n	N1 moteur n	0,125	1Hz	%		
Tq #n	Torque moteur n	1	4Hz	%		
GLIDEDEV	Déviation Glide	0,3% de l'amplitude maximale	1Hz	ddm		
LOCDEV	Déviation Localizer	0,3% de l'amplitude maximale	1Hz	ddm		
FPA	Angle de pente sol	0,1	2Hz	deg		
	Paramètres secondaires					
SAT	Température statique	0,5	1Hz	°C		
WS	Vitesse du vent	1	0,25Hz/1Hz	kt		
WD	Direction du vent	1	0,25Hz/1Hz	deg		

Informations de contexte utiles

Critère de trajectoire : il est nécessaire de connaître le plan de descente de référence pour chaque terrain concerné.

-

 $^{^4}$ Il pourra être pertinent d'associer à cet événement les mesures suivantes : hauteur de $\mathbf{1}^{\text{ère}}$ déstabilisation et hauteur de dernière instabilité.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS

Edition 1

Page: 13/45

Version 0 du 09/07/2015

<u>Limitations</u>

- Lorsque la VAPP est enregistrée, on supposera que sa valeur est juste et on l'utilisera directement. Cette méthode ne prend donc pas en compte une éventuelle erreur de sélection ou de calcul.

Dans le cas où la VAPP n'est pas enregistrée, il est possible de la reconstituer à partir de la masse, de la configuration et du vent.

Si les données de vent ne sont pas disponibles, on pourra utiliser la VREF et prendre une marge pour prendre en compte les corrections de vent.

- Sous 200 ft RA, le signal de l'antenne du Glide ne matérialise plus un plan de descente. L'information enregistrée ne peut donc plus être utilisée directement.
- Lorsque le paramètre FPA n'est pas enregistré, on pourra à chaque instant calculer (à partir de la hauteur terrain et de la distance au seuil de piste) le plan à suivre pour atteindre le seuil de piste à une hauteur de 50ft et le comparer au plan de référence.
- Dans le cas particulier où un exploitant réalise un grand nombre d'approches à vue, le critère de vitesse pourra être surveillé à partir de 500 ft.
 - Renseignements complémentaires

Critère de vitesse :

- On pourra surveiller les paramètres de vent.
- Il peut être intéressant d'établir une corrélation avec les cas d'atterrissage dur ou d'arrondi long.

Méthode 2 : Critères de détection combinés

Cette méthode consiste à regrouper plusieurs critères. Par exemple, on peut considérer l'énergie de l'avion.

Energie insuffisante

C1: Continuellement lent

Critère de vitesse méthode 1 IAS<Vapp+Δv_{min} vérifié à 1000ft, à 500ft et à 50ft

C2: Continuellement bas

Critère de trajectoire méthode 1 (FPA-Plan_{ref}) < ΔFPA_{min} vérifié à 1200ft, à 800ft et à 400ft

C3 : Critère de poussée méthode 1

Critère « Energie insuffisante »: C1 et C2 et C3

Energie trop importante

C'1 : Continuellement rapide

Critère de vitesse méthode 1 VAPP+ ΔV_{max} <IAS vérifié à 1000ft, à 500ft et à 50ft

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 14/45

Version 0 du 09/07/2015

C'2 : Continuellement haut

Critère de trajectoire méthode 1 (FPA-Plan_{ref}) > Δ FPA_{max} vérifié à 1200ft, à 800ft et à 400ft

C'3: VZ continuellement élevée

Critère de vitesse verticale méthode1 VZ<VZmin vérifié entre [1000ft; 2000ft], entre [500ft;1000 ft] et sous 500ft.

Critère 'Energie trop importante': C'1 et C'2 et C'3

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 15/45

Version 0 du 09/07/2015

E02: Atterrissage dur

Objectif de l'événement

Cet événement a pour objectif d'identifier les cas où le toucher des roues à l'atterrissage est tel que les trains ont emmagasiné une énergie trop élevée et ont pu être endommagés.

Méthode 1 : utilisation du facteur de charge normal

Cette méthode consiste à identifier les cas où le facteur de charge normal est élevé au moment du toucher des roues. Ce paramètre à lui seul ne permet pas de déterminer si l'énergie emmagasinée par les trains a été excessive. En revanche, la mesure du facteur de charge normal est un bon indicateur.

Logique de détection

Critère	Fenêtre d'observation	Temps de confirmation
NZ _{max} <nz< th=""><th>[TD-5s;TD+5s]</th><th>N/A</th></nz<>	[TD-5s;TD+5s]	N/A

Niveau de sévérité

Exemples de seuils

Seuil de niveau 1 : $NZ_{max} = 1,5G$ Seuil de niveau 2 : $NZ_{max} = 1,7G$ Seuil de niveau 3 : $NZ_{max} = 1,9G$

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité	
		Paramètres primaire	es		
LDGL	Compression du train principal gauche	N/A	1Hz/4Hz	N/A	
LDGR	Compression du train principal droit	N/A	1Hz/4Hz	N/A	
NZ	Facteur de charge normal	0,004	8Hz	G	
	Paramètres secondaires				
ROLL	Angle de roulis	0,5	2Hz	deg	

Informations de contexte utiles

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 16/45

Version 0 du 09/07/2015

Limitations

Détermination du toucher des roues :

Les paramètres « compression du train principal » ne sont pas toujours assez échantillonnés.

Pour définir l'instant précis du toucher des roues, on pourra utiliser le facteur de charge normal NZ qui est plus échantillonné: le toucher correspondant au début de l'augmentation significative du NZ.

On pourra aussi considérer la vitesse des roues lorsque ce paramètre est enregistré.

Renseignements complémentaires

Pour mieux apprécier la qualité du toucher, on pourra surveiller l'angle de roulis.

Méthode 2 : calcul de l'énergie

Cette méthode consiste à calculer précisément l'énergie absorbée par le train au moment du toucher. Elle nécessite la connaissance précise de la masse et de la vitesse verticale au moment de l'impact.

Logique de détection

Critère	Fenêtre d'observation
Energie TD>Energiemax => GWTD*VZTD²>Energiemax	[TD-5s;TD+5s]

Niveau de sévérité

Les trains d'atterrissage sont certifiés pour absorber une énergie maximale au toucher qui correspond à une vitesse verticale minimale de :

- 6ft/s à la MTOW
- 10ft/s à la MLW

=> Energie_{maxcertifiée}= max[(10ft/s)²*MLW; (6ft/s)²*MTOW]

Paramètres enregistrés nécessaires

	Tarametres em egistres necessaries				
Paramètre	Description	Résolution	Fréquence	Unité	
	•		Minimale/Optimale		
		Paramètres primaire	es		
LDGL	Compression du	N/A	1Hz/4Hz	N/A	
	train principal				
	gauche				
LDGR	Compression du	N/A	1Hz/4Hz	N/A	
	train principal				
	droit				
GW	Masse	100kg	superframe ⁵	kg	
VZ	Vitesse verticale	16 ft/min	1Hz/4Hz	ft/min	

-

⁵ Paramètre échantillonné toutes les 64 secondes

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 17/45

Version 0 du 09/07/2015

Informations de contexte utiles

Il est nécessaire de connaitre la MLW et la MTOW.

Limitations

Détermination du toucher des roues :

Les paramètres «compression du train principal» ne sont pas toujours assez échantillonnés.

Pour définir l'instant précis du toucher des roues, on pourra utiliser le facteur de charge normal NZ qui est plus échantillonné: le toucher correspondant au début de l'augmentation significative du NZ.

On pourra aussi considérer la vitesse des roues lorsque ce paramètre est enregistré.

Détermination de la vitesse verticale au moment de l'impact :

La vitesse verticale n'est pas toujours assez échantillonnée voire n'est pas enregistrée.

Pour connaître sa valeur juste avant le toucher des roues, on pourra utiliser la méthode suivante:

Calculer l'accélération verticale AZ dans le repère terrestre à partir du facteur de charge enregistré dans le repère avion selon la formule suivante :

$$AZ = g(\sin\theta * NX - \cos\theta\sin\varphi * NY - \cos\theta\cos\varphi * NZ)$$

$$\theta = assiette \\ \varphi = roulis \\ NX = facteur \ de \ charge \ longitudinal \ exprimé \ dans \ le \ repère \ avion \\ NY = facteur \ de \ charge \ latéral \ exprimé \ dans \ le \ repère \ avion \\ NZ = facteur \ de \ charge \ normal \ exprimé \ dans \ le \ repère \ avion \\$$

La fenêtre temporelle est [TD-10s;TD]

- Intégrer une première fois l'accélération verticale AZ(t) en fixant une valeur initiale de VZ_{TD} pour obtenir une VZ(t)
- Puis intégrer la VZ(t) en fixant $Z_{TD}=0$ ft pour obtenir Z(t)
- Comparer Z(t) à l'altitude radio enregistrée RA(t)
- Procéder par itération et faire varier VZ_{TD} jusqu'à ce que Z(t) corresponde à RA(t)

- Détermination de la masse au moment de l'impact :

Lorsqu'elle n'est pas enregistrée, la masse peut être obtenue à partir de la consommation carburant et de la masse au décollage récupérée via d'autres sources d'information.

Renseignements complémentaires

Il peut être intéressant de surveiller la position de la commande de poussée car une réduction progressive de la poussée peut entrainer des atterrissages durs.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Version 0 du 09/07/2015

Page: 18/45

E03: Atterrissage long

Objectif de l'événement

Cet événement a pour objectif d'identifier les cas où le toucher des roues se fait après la zone prévue. La DSAC préconise de surveiller la distance entre le toucher des roues et le seuil de piste plutôt que la longueur de piste restante au moment du toucher qui dépend du terrain. L'objectif est d'évaluer la capacité à atterrir dans la zone de touchée des roues prévue et ceci indépendamment du risque de sortie de piste.

Méthode 1 : Utilisation des coordonnées géographiques

Cette méthode repose sur l'enregistrement des coordonnées géographiques. Il s'agit de calculer la distance entre le point de toucher des roues et le seuil de piste.

Logique de surveillance

Logique de sui vemanee
Critère
D _{max} <d< td=""></d<>
$D[\text{m\`etres}] = 1852*60 \text{arcos}[\cos(\text{LATP}_{\text{seuil_piste}})\cos(\text{LATP})\cos(\text{LONP}_{\text{seuil_piste}} - \text{LONP}) + \sin(\text{LATP}_{\text{seuil_piste}})\sin(\text{LATP})]$

Niveau de sévérité

Exemple de seuil

Règlementairement, le toucher des roues doit se faire entre 300m et 600m du seuil. On peut donc envisager de mettre un premier niveau de seuil à 600m.

Seuil de niveau 1 : $D_{max} = 600$

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence	Unité
			Minimale/Optimale	
		Paramètres primaire	es	
LDGL	Compression	N/A	1Hz/4Hz	N/A
	train principal			
	gauche			
LDGR	Compression	N/A	1Hz/4Hz	N/A
	train principal			
	droit			
LATP	Latitude	0,000176	1Hz/4Hz	deg
LONP	Longitude	0,000177	1Hz/4Hz	deg

<u>Informations de contexte utiles</u>

Il est nécessaire de connaître la position géographique du seuil de piste.

La position géographique des seuils de piste des terrains fréquentés doit être renseignée et tenue à jour dans une base de données interfacée avec le programme d'ADV.

Limitations

⁶ Cette précision correspond à un écart d'environ 20 mètres.

⁷ Cette précision correspond à un écart d'environ 20 mètres quand on se place à l'équateur.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 19/45

Version 0 du 09/07/2015

Avec un paramètre indiquant la compression du train principal enregistré à une fréquence d'1Hz, pour une vitesse sol au toucher de 70 m/s, l'erreur liée à la détermination du point de toucher, en première approximation, est de 70 mètres.

L'imprécision liée à la résolution des paramètres latitude/longitude (voir notes 5 et 6) est d'environ 20 mètres.

L'imprécision liée à la résolution des paramètres latitude/longitude cumulée à l'imprécision liée à la détermination du point de toucher donne une erreur d'environ 90 mètres.

Renseignements complémentaires

[Réservé]

Méthode 2 : intégration de la vitesse sol à partir du passage de l'antenne du Glide Dans le cas d'approche utilisant le guidage de l'antenne Glide, lorsque les paramètres « latitude » et « longitude » ne sont pas enregistrés ou ne sont pas exploitables (échantillonnage ou résolution insuffisants), une méthode qui repose d'une part sur la détection du moment où l'avion passe l'antenne Glide et d'autre part sur l'intégration de la vitesse sol, peut être utilisée.

Sous 100 ft, en vol ou au sol, le passage de l'antenne Glide peut se caractériser par un changement de signe du paramètre GLIDEDEV et un saut significatif de sa valeur (ex : 1,3 dot) entre deux pas successifs.

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence	Unité
			Minimale/Optimale	
		Paramètres primaire	s	
LDGL	Compression train principal gauche	N/A	1Hz/4Hz	N/A
LDGR	Compression train principal droit	N/A	1Hz/4Hz	N/A
GLIDEDEV	Déviations Glide	0,3% de l'amplitude maximale	1Hz	ddm
GS	Vitesse sol	1	1Hz	kt

Informations de contexte utiles

Voir méthode 1

Limitations

[Réservé]

Renseignements complémentaires

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 20/45

Version 0 du 09/07/2015

E04: Assiette élevée au décollage ou à l'atterrissage

Objectif de l'évènement

Cet événement a pour objectif d'identifier les cas où la marge d'assiette par rapport à l'assiette de « Tail strike » est insuffisante au décollage ou à l'atterrissage.

Méthode

La méthode consiste à détecter durant la fenêtre d'observation, pour une hauteur donnée, la valeur de l'assiette et à la comparer à une valeur seuil qui est fonction de l'assiette de « Tail strike ».

Logique de surveillance

Critère	Fenêtre d'observation
PITCH _{tail_strike} *x% <pitch< td=""><td>Décollage :</td></pitch<>	Décollage :
	Début d'augmentation de l'assiette jusqu'à
	une hauteur à déterminer (en fonction de la
	géométrie de l'avion ⁹)
PITCH _{tail_strike} est une fonction de la hauteur	Atterrissage :
à laquelle se trouve l'avion et des	Hauteur à déterminer (en fonction de la
caractéristiques géométriques de l'avion ⁸ .	géométrie de l'avion) jusqu'à l'assiette de
	roulage

Niveau de sévérité

Pour homogénéiser pour tous les types avions, il peut être intéressant de mesurer la marge d'assiette en % par rapport à l'assiette de « Tail strike ».

Exemples de seuils

Seuil de niveau 3: x= 90 (10 % de marge)

Seuil de niveau 1 : x= 80 (20 % de marge) Seuil de niveau 2 : x= 85 (15 % de marge)

⁸ L'assiette de « Tail Strike » dépend d'une part de la longueur entre la queue de l'avion et un point de référence situé sous le fuselage et d'autre part de la hauteur de l'avion mesurée en ce point. En pratique, on pourra prendre comme point de référence les radioaltimètres.

⁹ D'après ce qui a été vu en note 7, la hauteur sera bornée par une assiette maximale raisonnablement atteignable.

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Version 0 du Page: 21/45 09/07/2015

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence	Unité
T di diffe ti c	Description	Resolution	Minimale/Optimale	omec
		Paramètres primaire	es	
RALT	Radio Altitude	1	1Hz	ft
PITCH	Assiette	0,5/0,1	4Hz	deg
	Paramètres secondaires			
PITCHC_CPT	Ordre au manche longitudinal CdB	0,7	4Hz	deg
PITCHC_FO	Ordre au manche longitudinal FO	0,7	4Hz	deg
IAS	Vitesse indiquée	0,25	1Hz	kt
SLATS	Position des becs	1	1Hz	deg
FLAPS	Position des volets	1	1Hz	deg

<u>Informations de contexte utiles</u>

Il est nécessaire de connaître l'assiette de « Tail strike » qui dépend des caractéristiques géométriques de l'avion et de la hauteur.

Limitations

[Réservé]

Renseignements complémentaires

Il peut être intéressant :

- d'observer les ordres au manche,
- d'observer la position des volets car une corrélation peut être faite,
- d'analyser les données par groupe de pilotes, le risque étant le plus élevé pour les pilotes ayant peu d'heures de vol.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 22/45

Version 0 du 09/07/2015

E05: Taux de rotation élevé au décollage ou à l'atterrissage

Objectif de l'événement

Cet événement a pour objectif d'identifier les cas où le taux de rotation est important lors du décollage ou lors de l'atterrissage. Cet événement peut être un précurseur de l'événement E04.

Méthode

La méthode consiste à détecter la valeur maximale du taux de rotation durant la fenêtre d'observation et de la comparer à une valeur seuil.

Logique de surveillance

Critère	Fenêtre d'observation
PITCH_RATE _{max} <max (pitch="" rate)<="" td=""><td>Décollage : Voir E04</td></max>	Décollage : Voir E04
	Atterrissage : Voir E04

Niveau de sévérité

Exemples de seuil:

Les valeurs de PITCH_RATE_{max} indiquées dans les tableaux ci-dessous sont exprimées en deg/s.

Décollage :

	A318	A320	A321	A330	A380
Niveau 1	5	4,5	4	3,5	4
Niveau 2	6	5,5	5	4,5	5
Niveau 3	7	6,5	6	5,5	6

Atterrissage:

	A318/A320/A321/A330	A380
Niveau 1	2	2,5
Niveau 2	2,5	3
Niveau 3	3	3,5

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 23/45

Version 0 du 09/07/2015

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité	
	Paramètres primaires				
RALT	Radio Altitude	1	1Hz	ft	
PITCH	Assiette	0,5	4Hz	deg	
PITCH RATE	Taux de rotation	0,3	4Hz	deg/s	
	Paramètres secondaires				
PITCHC_CPT	Ordre au manche longitudinal CdB	0,7	4Hz	deg	
PITCHC_FO	Ordre au manche longitudinal FO	0,7	4Hz	deg	
IAS	Vitesse indiquée	0,25	1Hz	kt	
SLATS	Position des becs	1	1Hz	deg	
FLAPS	Position des volets	1	1Hz	deg	

Informations de contexte utiles

[Réservé]

Limitations

La paramètre « PITCH RATE » n'est pas toujours enregistré. Il est possible de le reconstituer¹⁰ à partir des angles d'assiette (θ) , de roulis (φ) et de lacet (ψ) .

Renseignements complémentaires

On pourra s'intéresser :

- aux ordres au manche,
- à la configuration,
- aux conditions aérologiques (présence de windshear).

23

¹⁰ Selon la formule suivante : PITCH RATE = cosθsinφ(dψ/dt) + cosφ(dθ/dt)

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 24/45

Version 0 du 09/07/2015

E06: Oscillations en roulis lors de l'approche finale

Objectif de l'événement

Cet événement a pour objectif d'identifier les cas d'oscillations en roulis anormaux durant l'approche finale. Ces oscillations peuvent être le résultat d'un « surpilotage » de la part de l'équipage.

Cela peut traduire le fait que les ressources utilisées pour le pilotage latéral pendant l'approche finale sont importantes au détriment d'autres actions et notamment lors de la phase d'arrondi.

Méthode 1

Il s'agit de:

- déterminer à chaque instant un roulis moyen R_{MOY} calculé sur une fenêtre temporelle glissante,
- déterminer les fronts montant (le roulis devient supérieur à $R_{MOY} + 3^{\circ}$ et augmente),
- déterminer les fronts descendant (le roulis devient inférieur à R_{MOY} 3° et diminue),
- compter le nombre de fois N où il y a une succession de fronts opposés tant que l'intervalle entre deux fronts opposés successifs ne dépasse pas 10s, le cas échéant N passe à 0. On commencera à compter à partir du premier front.

Logique de surveillance

Critère	Fenêtre d'observation
N _{max} <n< th=""><th>$H^{11} \in [0ft; 1000 ft]$</th></n<>	$H^{11} \in [0ft; 1000 ft]$

Niveau de sévérité

Exemples de seuil sur famille Airbus:

Seuil de niveau 1 : N_{max} = 4 Seuil de niveau 2 : N_{max} = 6 Seuil de niveau 3 : N_{max} = 8

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres primaire	S	
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
ROLL	Roulis	0,5	2Hz	deg
ALT	Altitude	5	1Hz	ft

Informations de contexte utiles

-

¹¹ Hauteur par rapport au terrain

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 25/45

Version 0 du 09/07/2015

[Réservé]

Limitations

[Réservé]

Renseignements complémentaires

On pourra s'intéresser :

- aux paramètres de vent et d'accélérations pour évaluer le niveau de turbulence,
- au statut d'engagement de l'AP.

➤ Méthode 2

Il s'agit de compter, lors de l'approche finale, le nombre d'actions au manche avec un débattement supérieur à un % donné de la butée.

Logique de surveillance

Critère	Fenêtre d'observation
Nbre (ROLLC>50%butée)>N _{50%}	H ∈ [0ft; 1000 ft]
ou Nbre (ROLLC>75%butée)>N _{75%} Ou Nbre(ROLLC>95%butée)>N _{95%}	
Avec ROLLC = ROLLC_CPT ou ROLLC_FO	

Niveau de sévérité

Exemples de seuils :

- Sur famille Airbus A330/A340/A380:

Seuil de niveau 3 : $N_{50\%}$ = 30 ; $N_{75\%}$ = 15 ; $N_{95\%}$ = 5

- Sur famille Airbus A320:

Seuil de niveau 3 : $N_{50\%}$ = 30 ; $N_{75\%}$ = 20 ; $N_{95\%}$ = 10

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence	Unité
		Paramètres primaire	S	
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
ALT	Altitude	5	1Hz	ft
ROLLC_CPT	Ordre au manche latéral CdB	0,7	4 Hz	deg
ROLLC_FO	Ordre au manche latéral FO	0,7	4 Hz	deg

Informations de contexte utiles

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 26/45

Version 0 du 09/07/2015

[Réservé]

<u>Limitations</u>

[Réservé]

Renseignements complémentaires

On pourra s'intéresser aux paramètres de vent et d'accélérations pour évaluer le niveau de turbulence.

Il pourra également être pertinent de chercher des corrélations avec d'autres événements tels que les atterrissages durs, les touchers longs, etc

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 27/45

Version 0 du 09/07/2015

E07: Passage sous vitesse d'évolution

Objectif de l'évènement

Cet événement a pour objectif d'identifier les cas où la vitesse devient inférieure à une vitesse seuil pour la fenêtre d'observation considérée.

Méthode

Il s'agit de comparer la vitesse à une valeur seuil en fonction de la phase de vol. Toutes les phases de vol sont considérées à l'exception de l'approche finale car elle est déjà traitée au travers de l'événement E01.

Logique de surveillance

Critère	Fenêtre d'observation	Temps de confirmation
Cas (1): IAS <v<sub>min</v<sub>	Décollage jusqu'à la commande de la configuration lisse	3s
Cas (2): IAS <v<sub>min</v<sub>	De la montée en configuration lisse jusqu'à 1000 ft en approche finale	3s

Niveau de sévérité

Le niveau de sévérité peut être évalué en fonction de :

- la valeur de la vitesse minimale atteinte,

Exemples de seuils

Cas (1):

Seuil de niveau 1 : $V_{min} = V2-5kt$

Seuil de niveau 3 : $V_{min} = V2min-5kt$

Cas (2):

Seuil de niveau 1 : $V_{min} = V_{EV}$ -10kt

Seuil de niveau 2 : $V_{min} = V_{EV}$ -15kt

Seuil de niveau 3 : $V_{min} = V_{EV}$ -20kt

- la durée de la sous vitesse,
- l'activation d'une protection « Grande incidence » ou d'une alerte d'approche du décrochage.

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres primaire	s	
ALT	Altitude	5	1Hz/2Hz	ft
IAS	Vitesse indiquée	0,25	1Hz	kt
GW	Masse	100 kg	superframe	kg

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 28/45

Version 0 du 09/07/2015

SLATS	Position des becs	1	1Hz	deg
FLAPS	Position des volets	1	1Hz	deg
		Paramètres secondair	es	
AOA	Angle d'incidence	0,5	1Hz	deg
AP	ON/OFF	N/A	1Hz	N/A
ATHR	ON/OFF	N/A	1Hz	N/A
VZ	Vitesse verticale	16	2Hz/4Hz	ft/min
AP/FD modes	Modes AP/FD engagés	N/A	1Hz	N/A

Informations de contexte utiles

Pour déterminer la vitesse V_{EV}, la connaissance de la masse est nécessaire.

Lorsqu'elle n'est pas enregistrée, la masse peut être obtenue à partir de la consommation carburant et de la masse au décollage récupérée via d'autres sources d'information.

Limitations

Dans la plupart des cas, les vitesses d'évolution (V_{EV}) ne sont pas enregistrées. Il est possible de les reconstituer en connaissant la masse, la configuration et l'altitude pression.

Cas du changement de configuration :

Lors du passage d'une configuration à une autre, celle des deux configurations qui confère la V_{EV} la moins élevée est conservée afin d'éviter des détections de passage sous V_{EV} indues. Ainsi, lors de l'amorçage d'une rentrée de volets par l'équipage via le levier de commande, la V_{EV} reste celle de la configuration précédente jusqu'à la fin de la cinématique des volets alors qu'en cas de sortie de volets, c'est la V_{EV} de la nouvelle configuration qui est immédiatement prise en compte.

Renseignements complémentaires

Il peut être intéressant :

- de connaître les automatismes engagés (modes engagés, vitesse cible,...),
- de regarder si une protection « Grande incidence » ou une alerte d'approche du décrochage s'est activée,
- de recueillir les informations permettant de déterminer la présence de turbulence.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 29/45

Version 0 du 09/07/2015

M01: Longueur de piste restante lors du roulage à l'atterrissage

Objectif de la mesure

Il s'agit de mesurer la longueur de piste restante au passage d'une certaine valeur de vitesse sol lors du roulage à l'atterrissage.

Méthode

On surveille la vitesse sol lors du roulage à l'atterrissage. Lorsque cette dernière atteint une valeur de référence, on calcule la distance de piste restante.

Cette méthode se base sur la connaissance de la position géographique de l'avion.

Logique de surveillance

Mesure	Fenêtre d'observation
L(GS=GS _{ref})	[TD; GS=30kt]
L[mètres]=1852*60arcos[cos(LATP _{bout-}	
piste)cos(LATP)cos(LONP _{bout-piste} -	
LONP)+sin(LATP _{bout-piste})sin(LATP)]	

Niveau de sévérité

La Flight Safety Foundation (FSF) préconise de mesurer la distance de piste restante au passage des 80 kt et de comparer cette valeur à 600 mètres.

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres prima	ires	
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
GS	Vitesse sol	1	1Hz	kt
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg

Informations de contexte utiles

Il est nécessaire de connaitre les coordonnées géographiques du bout de piste.

La position géographique des seuils de piste des terrains fréquentés doit donc être renseignée et tenue à jour dans une base de données interfacée avec le programme d'ADV.

Limitations

Voir E03

Renseignements complémentaires

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 30/45

Version 0 du 09/07/2015

M02: Différence entre décélération réelle et décélération minimale requise lors du roulage à l'atterrissage

Objectif de la mesure

Il s'agit de mesurer lors de la phase de roulage à l'atterrissage, à un instant donné, la différence entre la décélération réelle de l'avion et la décélération minimale requise pour un arrêt sur la longueur de piste restante, ceci afin de détecter une décélération insuffisante.

Méthode

On calcule la décélération minimale requise à appliquer pour un arrêt complet sur la longueur de piste restante. Ce minimum est comparé à la décélération réelle.

Pour le calcul de la décélération minimale requise AX_{min} , on prendra l'hypothèse d'une décélération constante.

Dans ce cas, AX_{min} est donnée par la formule suivante :

 $AX_{min} = GS^2/(2L)$

Avec GS = vitesse sol et L = longueur de piste restante

Logique de surveillance

Mesure	Fenêtre d'observation
AX-[GS ² /(2L)]	[TD; GS=50 kt]
Avec L[mètres]=1852*60 arcos[cos (LATP _{bout-piste})cos (LATP)cos (LONP _{bout-piste} -LONP)+sin(LATP _{bout-piste})sin(LATP)]	

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
	Paramètres primaires			
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
GS	Vitesse sol	1	1Hz	kt
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg
AX	Accélération longitudinale	0,004	4Hz	m/s²

Informations de contexte utiles

Il est nécessaire de connaître les coordonnées géographiques du bout de piste (voir M01).

Limitations

Voir E03

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 31/45

Version 0 du 09/07/2015

• Renseignements complémentaires

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 32/45

Version 0 du 09/07/2015

M03: Délai entre le toucher et l'instant où la décélération atteint le minimum requis

Objectif de la mesure

Le but est de mettre en évidence les cas où la décélération tarde à rejoindre la décélération minimale requise. Cela peut être dû à un délai dans l'application des dispositifs de freinage (ex : sélection tardive des reverse ou application tardive du freinage manuel).

Méthode

On cherche l'instant T où l'accélération réelle devient supérieure à l'accélération minimale requise pour un arrêt sur la longueur de piste restante. Puis, on mesure la différence de temps entre T et l'instant de toucher des roues.

Logique de surveillance

Mesure	Fenêtre d'observation
$\Delta t = T - T_{TD}$	[TD; TD+30s]
$T = fonction (AX-AX_{min}^{12})$	

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
	Paramètres primaires			
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
GS	Vitesse sol	1	1Hz	kt
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg
AX	Accélération longitudinale	0,004	4Hz	m/s ²

Informations de contexte utiles

Il est nécessaire de connaître les coordonnées géographiques du bout de piste.

Limitations

Voir M01

Renseignements complémentaires

[Réservé]

¹²Voir M02 pour le calcul

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 33/45

Version 0 du 09/07/2015

M04: Différence entre décélération minimale requise et décélération cible de l'A/B lors du roulage à l'atterrissage

Objectif de la mesure

Le but est d'identifier les cas où la cible de décélération de l'A/B ne permet pas d'arrêter l'avion et où la reprise du freinage en manuel s'avère nécessaire. Cela met en évidence des conditions rencontrées différentes de celles prises pour l'hypothèse de calcul (Vent arrière, VAPP, distance du TD).

Méthode

On calcule la décélération minimale requise pour un arrêt en bout de piste (AX_{min}) et on compare cette valeur à la décélération commandée par l'A/B ($Ax_{A/B}$) depuis le toucher des roues jusqu'au passage des 40 kt.

Logique de surveillance

Mesure	Fenêtre d'observation
AX_{min}^{13} - $AX_{A/B}$	[TD; GS=40kt]

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
	Paramètres primaires			
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
A/B SEL	Mode A/B sélectionné	N/A	1Hz	N/A
GS	Vitesse sol	1	1Hz	kt
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg
AX	Accélération longitudinale	0,004	4Hz	m/s ²

Informations de contexte utiles

Lorsque seuls les modes de l'A/B sont enregistrés, il est nécessaire de connaître la valeur de décélération associée à chacun de ces modes.

Limitations

Voir M02

Renseignements complémentaires

Il peut être intéressant de faire une corrélation avec les données météorologiques.

¹³ Voir M02 pour le calcul

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 34/45

Version 0 du 09/07/2015

M05: Différence entre décélération réelle et décélération commandée par l'A/B lors du roulage à l'atterrissage

Objectif de la mesure

Il s'agit de détecter, lors du roulage à l'atterrissage, les cas où, lorsque l'A/B est activé, sa cible n'est pas atteinte. Ceci traduirait le fait que l'avion glisse sur la piste.

Méthode

La décélération réelle est comparée à la décélération commandée par l'A/B $(AX_{A/B})$ à partir du toucher des roues.

Logique de surveillance

Mesure	Fenêtre d'observation
AX-AX _{A/B}	[TD; GS=50kt]
A/B = ON	

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres primaire	s	
AX	Accélération longitudinale	0,004	4Hz	m/s²
A/B SEL	Mode A/B sélectionné	N/A	1Hz	N/A
A/B ENGAGED	Activation A/B (ON/OFF)	N/A	1Hz	N/A
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
GS	Vitesse sol	1	1Hz	kt

Informations de contexte utiles

Dans la plupart des cas, seul le mode d'A/B activé est enregistré. Il est donc nécessaire de connaître les valeurs de décélération commandées par l'A/B selon le mode activé.

Limitations

[Réservé]

Renseignements complémentaires

Il peut être intéressant de faire une corrélation avec les données météorologiques.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 35/45

Version 0 du 09/07/2015

M06: Différence entre N1 réel et N1 du régime ralenti lors de la séquence de rentrée des reverses à l'atterrissage

Objectif de la mesure

Cette mesure a pour objectif de détecter une séquence de rentrée des reverse trop rapide. Dans ce cas, les reverses sont rentrées alors que la poussée n'a pas atteint son niveau de ralenti ce qui génère une poussée positive.

Méthode

On compare le N1 réel au N1 du régime ralenti lorsque les reverses passent de la position « SORTIS » à « RENTRES ».

Logique de surveillance

Mesure	Fenêtre d'observation
N1 _{REEL} -N1 _{RALENTI}	REV(N)=SORTIS ET REV(N+1)≠SORTIS
	(Commande des reverses en position
	'SORTIS' au pas N et en position
	'RENTRES' au pas N+1)

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
	Paramètres primaires			
REV	Position des manettes de commande des reverses	1	1Hz	deg
N1	N1	1	1Hz	%
GS	Vitesse sol	1	1Hz	kt
WOW	Position AIR/SOL (SOL=1)	N/A	1Hz	N/A

Informations de contexte utiles

Il est nécessaire de connaître le N1 du régime de ralenti. Cette donnée pourra être fournie par le constructeur.

<u>Limitations</u>

[Réservé]

Renseignements complémentaires

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 36/45

Version 0 du 09/07/2015

M07: Délai entre toucher des roues et sortie des reverses à l'atterrissage

Objectif de la mesure

Le but de cette mesure est de détecter les cas où les reverses sont sortis tardivement lors du roulage à l'atterrissage.

Méthode

On mesure le temps T1 entre le toucher des roues et l'instant où les reverses sont en position « REV IDLE » et le temps T2 entre le toucher des roues et l'instant où les reverses sont en position « MAX REV ».

Logique de surveillance

Mesure	Fenêtre d'observation
$T1 = T_{REVIDLE} - T_{TD}$	[TD; GS=70kt]
$T2 = T_{MAXREV} - T_{TD}$	

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
	Paramètres primaires			
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
REV	Position des manettes de commande des reverses	1	1Hz	deg
GS	Vitesse sol	1	1Hz	kt

Informations de contexte utiles

[Réservé]

Limitations

[Réservé]

Renseignements complémentaires

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 37/45

Version 0 du 09/07/2015

■ E08: Non sortie des reverse lors du roulage à l'atterrissage

Objectif de l'événement

Le but est de détecter les cas où les reverses ne sont pas sortis lors de la phase de décélération au roulage à l'atterrissage.

Méthode

La position des manettes de commande des reverses est surveillée à partir du toucher des roues.

Logique de surveillance

Critère	Fenêtre d'observation	
REV=JAMAIS SORTIS ¹⁴	[TD; GS = 70kt]	

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres primaire	s	
WOW	Position AIR/SOL (1=SOL)	N/A	1Hz	N/A
REV	Position des manettes de commande des reverses	1	1Hz	deg
GS	Vitesse sol	1	1Hz	kt

Informations de contexte utiles

[Réservé]

<u>Limitations</u>

[Réservé]

• Renseignements complémentaires

[Réservé]

¹⁴ Si REV (= SORTIS) = 0°alors REV **JAMAIS** en position 'SORTIS' peut se traduire par $\int_{t=TD}^{t(GS=70kt)} REV = 0$

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 38/45

Version 0 du 09/07/2015

■ E09: Approche non conforme

Description de l'évènement

Une approche non conforme est une approche en vol IFR au cours de laquelle, les conditions de rejointe de l'approche finale peuvent compromettre l'atteinte des objectifs de stabilisation évoqués en E01.

Les événements ou mesures suivants pourront être pris en compte.

1) Configuration tardive

Objectif de l'événement

Il s'agit de détecter les cas où l'avion est configuré tardivement.

Logique de surveillance

Critère	Fenêtre d'observation	Temps de confirmation
CONFIGURATION =	H∈[1000ft; 1700ft]	2s
configuration précédant la		
sortie des trains		
d'atterrissage		

Niveau de sévérité

Le niveau de sévérité peut être évalué en fonction de l'altitude à laquelle le changement de configuration a lieu.

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres primaire	s	
ALT	Altitude	5	1Hz/2Hz	ft
SLATS	Position des becs	1	1Hz	deg
FLAPS	Position des volets	1	1Hz	deg

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 39/45

Version 0 du 09/07/2015

2) Vitesse en approche

Objectif de la mesure

Il s'agit de détecter les cas où la vitesse, à une distance donnée du seuil de piste, est trop élevée pour permettre d'atteindre les critères de stabilité en vitesse et poussée au plancher de stabilisation.

Logique de surveillance

Mesure		
$IAS(D=D_{ref})$		
Avec D = distance au seuil de piste		
D correspond à la longueur de la trajectoire parcourue depuis le seuil de piste		
On pourra prendre $D_{ref} = 8NM$.		

Niveau de sévérité

La DGAC préconise que la vitesse à une distance de référence du seuil de piste de 8NM ne soit pas supérieure à 180 kt (voir Info Sécurité N°2013/09). Ce seuil doit être adapté en fonction de l'aéronef exploité.

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/Optimale	Unité
		Paramètres primaire	s	
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg
IAS	Vitesse indiquée	0,25	1Hz	kt

Informations de contexte utiles

Il est nécessaire de connaître les coordonnées géographiques du seuil de piste.

Limitations

[Réservé]

Renseignements complémentaires

[Réservé]

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 40/45

Version 0 du 09/07/2015

3) Vitesse verticale en approche

Objectif de l'événement

Il s'agit de détecter les cas où la vitesse verticale, à une distance donnée du seuil de piste, est trop élevée en valeur absolue pour permettre d'atteindre les critères de stabilité au plancher de stabilisation.

Logique de surveillance

Critère	Fenêtre d'observation
VZ <vz<sub>min</vz<sub>	H ∈ [1000 ft; 3000 ft]

Niveau de sévérité

On pourra prendre abs(VZ_{min}) = H/2

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/ Optimale	Unité
Paramètres primaires				
ALT	Altitude	5	1Hz/2Hz	ft
VZ	Vitesse verticale	16	2Hz/4Hz	ft/min

Informations de contexte utiles

[Réservé]

■ <u>Limitations</u>

[Réservé]

• Renseignements complémentaires

[Réservé]

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 41/45

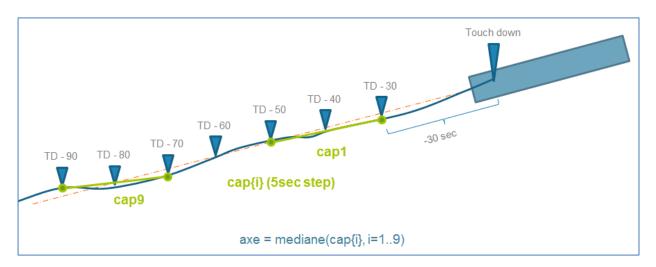
Version 0 du 09/07/2015

4) Interception de l'axe d'approche

Objectif des mesures

Il s'agit de surveiller les conditions dans lesquelles l'axe d'approche est intercepté. En plus des éléments de contexte lors de l'interception (hauteur, distance au toucher, etc), on s'intéressera plus particulièrement à l'angle d'interception, afin de voir s'il est anormalement élevé.

Méthode


La méthode pour calculer l'instant d'interception de l'axe consiste à considérer l'axe suivi en approche finale comme étant l'axe de référence. Il faudra donc dans une première passe d'analyse déterminer cet axe à partir des données enregistrées (méthode détaillée cidessous).

En phase d'approche, cet axe théorique est comparé à tout instant au cap suivi par l'avion, ainsi qu'au cap obtenu en traçant une ligne droite entre l'avion et son point de toucher. On considère que l'axe est intercepté lorsque ces trois caps coïncident.

Il suffit ensuite de récupérer le cap suivi par l'avion avant le dernier virage pour obtenir l'angle d'interception par soustraction. La détection du dernier virage est faite en surveillant les variations de l'angle de roulis¹⁵.

Détermination de l'axe moyen suivi¹⁶.

L'axe est déterminé en utilisant une période courte du vol allant de TD-90s et TD-30s. 9 axes moyens sont calculés en utilisant les coordonnées GPS de l'avion entre des points espacés de 20 secondes (TD-90s,TD-70s), (TD-85s, TD-65s) (TD-80s, TD-60s), etc... La valeur finale de l'axe est déterminée en calculant la valeur médiane de ces 9 valeurs.

¹⁵ On pourra prendre le critère suivant : ROLL>8° pendant au moins 3s.

¹⁶ La méthode proposée fait l'objet d'une expérimentation et n'est pas mise en œuvre dans les programmes d'analyse des vols des opérateurs à l'heure actuelle.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 42/45

Version 0 du 09/07/2015

Cette méthode permet de s'affranchir de la connaissance de l'axe d'approche publié qui dépend de chaque terrain.

L'utilisation de 3 caps différents pour valider l'interception de l'axe permet d'éviter des faux positifs et notamment les cas où la trajectoire suivie serait parallèle à l'axe final.

Logique de surveillance

Mesures	Fenêtre d'observation
Angle d'interception de l'axe	[60NM du seuil ; TD]
Hauteur terrain au moment de l'interception	
Distance au toucher	
Delta de hauteur par rapport au plan de	
référence (voir §5)	

Paramètres enregistrés nécessaires

Paramètre	Description	Résolution	Fréquence Minimale/ Optimale	Unité
		Paramètres primair	es	
WOW	Position AIR/SOL(SOL=1)	N/A	1Hz	N/A
ROLL	Roulis	0,5	2Hz	deg
ALT	Altitude	5	1Hz/2Hz	ft
HEADING	Сар	0,5	2Hz	deg
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg

Informations de contexte utiles

Il peut être utile de connaitre la position géographique du seuil de piste.

<u>Limitations</u>

[Réservé]

Renseignements complémentaires

Il est intéressant d'analyser ces données par terrain et par QFU afin notamment de se focaliser sur les approches pour lesquelles une régulation radar est effectuée.

GUIDE DSAC DE BONNES PRATIQUES

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

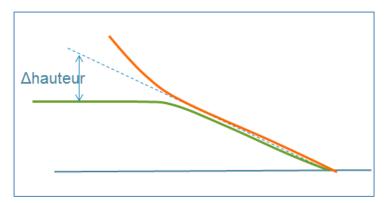
Page: 43/45

Version 0 du 09/07/2015

5) Interception du plan de descente

Objectif des mesures

Il s'agit de surveiller les conditions dans lesquelles le plan est intercepté. En plus des éléments de contexte lors de l'interception (hauteur, distance au toucher), on s'intéressera plus particulièrement à la différence de hauteur par rapport à ce plan au moment de l'interception de l'axe, ce qui permettra de caractériser les interceptions de plan dites « par le haut ».


Méthode

La méthode pour calculer l'instant d'interception du plan consiste à considérer le plan suivi en approche finale comme étant le plan de référence. Il faudra donc, dans une première passe d'analyse, déterminer ce plan à partir des données enregistrées (méthode détaillée ci-dessous).

En phase d'approche, et une fois que l'axe est intercepté, on calcule à tout instant la différence ΔH entre la hauteur réelle de l'avion et la hauteur théorique qu'il aurait s'il se trouvait sur le plan de référence .

Quand ΔH s'approche de 0 (on pourra utiliser par exemple une tolérance de 200 ft en valeur absolue), on considère que le plan est intercepté.

Si ΔH était positif avant l'interception du plan, cela signifie que le plan est capturé par le haut.

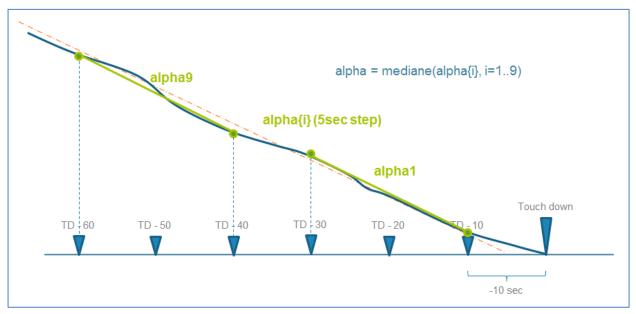
Détermination du plan moyen suivi¹⁷:

Le plan suivi en phase d'approche est déterminé en utilisant une période courte du vol allant de TD-60s et TD-10s.

9 angles moyens sont calculés en utilisant les coordonnées géographiques de l'avion ainsi que l'altitude entre des points espacés de 20 secondes (TD-60,TD-40), (TD-55, TD-35) (TD-50, TD-30), etc...

La valeur finale du plan est déterminée en calculant la valeur médiane de ces 9 valeurs.

-


¹⁷ La méthode proposée fait l'objet d'une expérimentation et n'est pas mise en œuvre dans les programmes d'analyse des vols des opérateurs à l'heure actuelle.

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 44/45

Version 0 du 09/07/2015

Cette méthode permet de s'affranchir de la connaissance du plan de descente publié qui dépend de chaque terrain.

Logique de surveillance

Mesures	Fenêtre d'observation
$\Delta H = ALT - ALT_{PLAN_REF}$	A partir de l'interception de l'axe et
ALT($\Delta H=0$) [Altitude au moment de	jusqu'à la hauteur du plancher de
l'interception du plan]	stabilisation
$D(\Delta H=0)$ [Distance au seuil de piste au	
moment de l'interception du plan]	
Δt = Durée entre interception de l'axe et du	
plan	

Paramètres enregistrés nécessaires

				
Paramètre	Description	Résolution	Fréquence Minimale/ Optimale	Unité
		Paramètres primaire	s	
WOW	Position AIR/SOL (1=SOL)	N/A	1Hz	N/A
ALT	Altitude	5	1Hz/2Hz	ft
LATP	Latitude	0,00017	1Hz	deg
LONP	Longitude	0,00017	1Hz	deg

Informations de contexte utiles

Il peut être utile de de connaitre la position géographique du seuil de piste.

Limitations

Les cas d'overshoot du plan ne sont pas considérés ici (avion sous le plan au moment de l'interception de l'axe puis passage au dessus du plan).

METHODES DE SELECTION ET DE TRAITEMENT DES PARAMETRES D'ANALYSE DES VOLS Edition 1

Page: 45/45

Version 0 du 09/07/2015

Renseignements complémentaires

Il est intéressant d'analyser ces données par terrain et par QFU afin notamment de se focaliser sur les approches pour lesquelles une régulation radar est effectuée.

DSAC/NO 50 rue Henry Farman 75720 Paris Cedex 15

Tél.: 01 58 09 44 80 Fax: 01 58 09 45 52

